ÿþ<HTML><HEAD><TITLE>25º Congresso Brasileiro de Microbiologia </TITLE><link rel=STYLESHEET type=text/css href=css.css></HEAD><BODY aLink=#ff0000 bgColor=#FFFFFF leftMargin=0 link=#000000 text=#000000 topMargin=0 vLink=#000000 marginheight=0 marginwidth=0><table align=center width=700 cellpadding=0 cellspacing=0><tr><td align=left bgcolor=#cccccc valign=top width=550><font face=arial size=2><strong><font face=Verdana, Arial, Helvetica, sans-serif size=3><font size=1>25º Congresso Brasileiro de Microbiologia </font></font></strong><font face=Verdana size=1><b><br></b></font><font face=Verdana, Arial,Helvetica, sans-serif size=1><strong> </strong></font></font></td><td align=right bgcolor=#cccccc valign=top width=150><font face=arial size=2><strong><font face=Verdana, Arial, Helvetica, sans-serif size=1><font size=1>ResumoID:1253-1</font></em></font></strong></font></td></tr><tr><td colspan=2><br><br><table align=center width=700><tr><td>Área: <b>Fermentação e Biotecnologia ( Divisão J )</b><p align=justify><strong><P><STRONG><FONT FACE=ARIAL SIZE=2>BIOFILM FORMATION AND PHENOTYPIC ALTERATIONS ASSOCIATED TO <EM>BACILLUS </EM></FONT></STRONG><STRONG><FONT FACE=ARIAL SIZE=2><EM>ATROPHAEUS</EM> SPORULATION BY SOLID STATE FERMENTATION</FONT></STRONG></P></strong></p><p align=justify><b><u>Sandra Regina B.r. Sella </u></b> (<i>CPPI/SESA-PR</i>); <b>Carla Masetti </b> (<i>UFPR</i>); <b>Belquis P. Guizelini </b> (<i>UFPR</i>); <b>Luciana P. S. Vandenberghe </b> (<i>UFPR</i>); <b>João Carlos Minozzo </b> (<i>CPPI/SESA-PR</i>); <b>Carlos Ricardo Soccol </b> (<i>UFPR</i>)<br><br></p><b><font size=2>Resumo</font></b><p align=justify class=tres><font size=2><P class=MsoNormal style="MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: justify"><I style="mso-bidi-font-style: normal"><SPAN lang=EN-US style="mso-ansi-language: EN-US">Bacillus</SPAN></I><SPAN lang=EN-US style="mso-ansi-language: EN-US"> <I style="mso-bidi-font-style: normal">sp</I>. spores are usually obtained from laboratory standard strains cultivated in artificial media - fortified agar or liquid media.</SPAN><SPAN lang=EN-US style="COLOR: black; FONT-FAMILY: Arial; mso-ansi-language: EN-US"> </SPAN><SPAN lang=EN-US style="mso-ansi-language: EN-US">However, in natural habitats, spores are<SPAN style="COLOR: black"> </SPAN>predominantly formed from bacteria present in highly surface associated communities of cells in extracellular polymers matrix called biofilms. Solid state fermentation (SSF) mimetizes<SPAN style="COLOR: blue"> </SPAN>the natural environment of many microorganisms, that grow attached to the surface of solid particle, better than submerse fermentation. This study aimed to confirm if the sporulation through SSF of <I style="mso-bidi-font-style: normal">Bacillus atrophaeus</I> ATCC 9372 standard strain promotes phenotypic changes and biofilm formation, by observing the growth characteristics of the spores formed. Spores were prepared using agar sporulation medium and sugarcane bagasse plus soybean molasses as SSF support and substrate respectively. <SPAN style="COLOR: black">Four systems for studying biofilm formation were applied:</SPAN> growth in standing cultures<SPAN style="COLOR: black">;</SPAN></SPAN><SPAN lang=EN-US style="FONT-FAMILY: Arial; mso-ansi-language: EN-US"> </SPAN><SPAN lang=EN-US style="mso-ansi-language: EN-US">colonies growth on the surface of agar plates; <SPAN style="mso-bidi-font-style: italic">swarming motility and</SPAN> the microtiter plate assay system. The maximum spores' concentration of 1.6 x 10<SUP>10</SUP> CFU g<SUP>-1</SUP> dry matter was obtained in SSF and 1.2 x 10<SUP>8</SUP> CFU g<SUP>-1</SUP> <SPAN style="mso-spacerun: yes">&nbsp;</SPAN>in agar medium, suggesting that SSF promotes an increase in productivity of about 100 times. Agar - spores growth in standing TSB cultures revealed the formation of thin, fragile, smooth and structureless pellicles on air-liquid interface and robust pellicles with intricate web-like structures when inoculated with SSF-spores. When spotted on TSA agar plates, the spores produced colonies with morphological features characteristic of their corresponding pellicles: smooth, small<SPAN style="COLOR: black"> and well defined</SPAN>, <SPAN style="COLOR: black">mucoid, large, undelimited and</SPAN> structurally complicated, respectively.<SPAN style="mso-bidi-font-weight: bold"> Swarming motility <SPAN style="mso-bidi-font-style: italic">in 0.7% agar culture</SPAN> was identified only<SPAN style="mso-bidi-font-style: italic"> in spores produced by solid state fermentation growth.</SPAN></SPAN> Adherence to the microtiter plates demonstrated that<I> </I><SPAN style="mso-bidi-font-style: italic">spores from SSF<I> </I></SPAN>had great ability to form biofilm (++ up to +++) and spores from agar were classified as "no producers". It was confirmed that sporulation through SSF induced phenotypic changes and biofilm development. There are no published reports on <I style="mso-bidi-font-style: normal">B. atrophaeus </I>biofilm formation<I style="mso-bidi-font-style: normal"> </I>associated to SSF sporulation, so elucidation of the genes, proteins and molecular mechanisms involved and its effect is necessary due to its potential application in productions improvement or new products development.</SPAN><B style="mso-bidi-font-weight: normal"><SPAN lang=EN-US style="FONT-FAMILY: Arial; mso-ansi-language: EN-US"><?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /><o:p></o:p></SPAN></B></P></font></p><br><b>Palavras-chave: </b>&nbsp;Bacillus atrophaeus, Biofilm, Solid state fermentation, Spotulation</td></tr></table></tr></td></table></body></html>